時域時鐘抖動分析(一)
新型的高速ADC 都具備高模擬輸入帶寬(約為較大采樣頻率的3 到6 倍),因此它們可以用于許多欠采樣應(yīng)用中。ADC 設(shè)計(jì)的較新進(jìn)展極大地?cái)U(kuò)展了可用輸入范圍,這樣系統(tǒng)設(shè)計(jì)人員便可以去掉至少一個中間頻率級,從而降低成本和功耗。在欠采樣接收機(jī)設(shè)計(jì)中必須要特別注意采樣時鐘,因?yàn)樵谝恍└咻斎腩l率下時鐘抖動會成為限制信噪比(SNR) 的主要原因。
本系列文章共有三部分,“第1 部分”重點(diǎn)介紹如何準(zhǔn)確地估算某個時鐘源的抖動,以及如何將其與ADC 的孔徑抖動組合。在“第2 部分”中,該組合抖動將用于計(jì)算ADC 的SRN,然后將其與實(shí)際測量結(jié)果對比。“第3 部分”將介紹如何通過改善ADC 的孔徑抖動來進(jìn)一步增加ADC 的SNR,并會重點(diǎn)介紹時鐘信號轉(zhuǎn)換速率的優(yōu)化。
采樣過程回顧
根據(jù)Nyquist-Shannon 采樣定理,如果以至少兩倍于其較大頻率的速率來對原始輸入信號采樣,則其可以得到完全重建。假設(shè)以100 MSPS 的速率對高達(dá)10MHz 的輸入信號采樣,則不管該信號是位于1 到10MHz 的基帶(首個Nyquist 區(qū)域),還是在100 到110MHz 的更高Nyquist 區(qū)域內(nèi)欠采樣,都沒關(guān)系(請參見圖1)。在更高(第二個、第三個等)Nyquist 區(qū)域中采樣,一般被稱作欠采樣或次采樣。然而,在ADC 前面要求使用抗混疊過濾,以對理想Nyquist 區(qū)域采樣,同時避免重建原始信號過程中產(chǎn)生干擾。

圖1 100MSPS 采樣的兩個輸入信號顯示了混疊帶來的相同采樣點(diǎn)
時域抖動
仔細(xì)觀察某個采樣點(diǎn),可以看到計(jì)時不準(zhǔn)(時鐘抖動或時鐘相位噪聲)是如何形成振幅變化的。由于高Nyquist 區(qū)域(例如,f1 = 10 MHz 到f2 = 110 MHz)欠采樣帶來輸入頻率的增加,固定數(shù)量的時鐘抖動自理想采樣點(diǎn)產(chǎn)生更大數(shù)量的振幅偏差(噪聲)。另外,圖2 表明時鐘信號自身轉(zhuǎn)換速率對采樣時間的變化產(chǎn)生了影響。轉(zhuǎn)換速率決定了時鐘信號通過零交叉點(diǎn)的快慢。換句話說,轉(zhuǎn)換速率直接影響ADC 中時鐘電路的觸發(fā)閾值。

圖2 時鐘抖動形成更多快速輸入信號振幅誤差
如果ADC 的內(nèi)部時鐘緩沖器上存在固定數(shù)量的熱噪聲,則轉(zhuǎn)換速率也轉(zhuǎn)換為計(jì)時不準(zhǔn),從而降低了ADC 的固有窗口抖動。如圖3 所示,窗口抖動與時鐘抖動(相位噪聲)沒有一點(diǎn)關(guān)系,但是這兩種抖動分量在采樣時間組合在一起。圖3 還表明窗口抖動隨轉(zhuǎn)換速率降低而增加。轉(zhuǎn)換速率一般直接取決于時鐘振幅。

時鐘抖動導(dǎo)致的SNR 減弱
有幾個因素會限制ADC 的SNR,例如:量化噪聲(管線式轉(zhuǎn)換器中一般不明顯)、熱噪聲(其在低輸入頻率下限制SNR),以及時鐘抖動(SNRJitter)(請參見下面方程式1)。SNRJitter 部分受到輸入頻率fIN(取決于Nyquist 區(qū)域)的限制,同時受總時鐘抖動量tJitter的限制,其計(jì)算方法如下:

SNRJitter[dBc]=-20×log(2π×fIN×tJitter) (2)
正如我們預(yù)計(jì)的那樣,利用固定數(shù)量的時鐘抖動,SNR 隨輸入頻率上升而下降。圖4 描述了這種現(xiàn)象,其顯示了400 fs 固定時鐘抖動時一個14 位管線式轉(zhuǎn)換器的SNR。如果輸入頻率增加十倍,例如:從10MHz 增加到100MHz,則時鐘抖動帶來的較大實(shí)際SNR 降低20dB。

如前所述,限制ADC SNR 的另一個主要因素是ADC 的熱噪聲,其不隨輸入頻率變化。一個14 位管線式轉(zhuǎn)換器一般有~70 到74 dB 的熱噪聲,如圖4 所示。我們可以在產(chǎn)品說明書中找到ADC 的熱噪聲,其相當(dāng)于較低指定輸入頻率(本例中為10MHz)的SNR,其中時鐘抖動還不是一個因素。
讓我們來對一個具有400 fs 抖動時鐘電路和~73 dB 熱噪聲的14 位ADC 進(jìn)行分析。低輸入頻率(例如:10MHz 等)下,該ADC 的SNR 主要由其熱噪聲定義。由于輸入頻率增加,400-fs 時鐘抖動越來越占據(jù)主導(dǎo),直到~300 MHz 時完全接管。盡管相比10MHz 的SNR,100MHz 輸入頻率下時鐘抖動帶來的SNR 每十倍頻降低20dB,但是總SNR 僅降低~3.5 dB(降至69.5dB),因?yàn)榇嬖?3-dB 熱噪聲(請參見圖5):

現(xiàn)在,很明顯,如果ADC 的熱噪聲增加,對高輸入頻率采樣時時鐘抖動便非常重要。例如,一個16 位ADC 具有~77 到80 dB 的熱噪聲層。根據(jù)圖4 所示曲線圖,為了較小化100MHz 輸入頻率SNR 的時鐘抖動影響,時鐘抖動需為大約150 fs 或更高。
確定采樣時鐘抖動
如前所述,采樣時鐘抖動由時鐘的計(jì)時不準(zhǔn)(相位噪聲)和ADC 的窗口抖動組成。這兩個部分結(jié)合組成如下:

我們在產(chǎn)品說明書中可以找到ADC 的孔徑口抖動(aperture jitter)。這一值一般與時鐘振幅或轉(zhuǎn)換速率一起指定,記住這一點(diǎn)很重要。低時鐘振幅帶來低轉(zhuǎn)換速率,從而增加窗口抖動。
時鐘輸入抖動
時鐘鏈(振蕩器、時鐘緩沖器或PLL)中器件的輸出抖動一般規(guī)定在某個頻率范圍內(nèi),該頻率通常偏離于基本時鐘頻率10 kHz 到20 MHz(單位也可以是微微秒或者繪制成相位噪聲圖),可以將其整合到一起獲取抖動信息。但是,低端的10kHz 和高端的20MHz 有時并非正確的使用邊界,因?yàn)樗鼈冋{(diào)試依賴于其他系統(tǒng)參數(shù),我們將在后面進(jìn)行詳細(xì)介紹。圖6 描述了設(shè)置正確整合限制的重要性,圖中的相位噪聲圖以其每十倍頻抖動內(nèi)容覆蓋。我們可以看到,如果將下限設(shè)定為100-Hz 或10kHz 偏移,則產(chǎn)生的抖動便極為不同。同樣地,例如,設(shè)置上整合限制為10 或20MHz,可得到相比100MHz 設(shè)置極為不同的結(jié)果。

圖5 產(chǎn)生的ADC SNR 受熱噪聲和時鐘抖動的限制

圖6 每十倍頻計(jì)算得到的時鐘相位噪聲抖動影響
確定正確的整合下限
在采樣過程中,輸入信號與采樣時鐘信號混頻在一起,包括其相位噪聲。當(dāng)進(jìn)行輸入信號FFT 分析時,主FFT 容器(bin)集中于輸入信號。采樣信號周圍的相位噪聲(來自時鐘或輸入信號)決定了鄰近主容器的一些容器的振幅,如圖7 所示。因此,小于1/2 容器尺寸的偏頻的所有相位噪聲都集中于輸入信號容器中,且未增加噪聲。因此,相位噪聲整合帶寬下限應(yīng)設(shè)定為1/2 FFT 容器尺寸。FFT 容器尺寸計(jì)算方法如下:

為了進(jìn)一步描述該點(diǎn),我們利用兩個不同的FFT尺寸—131,072 和1,048,576 點(diǎn),使用ADS54RF63 進(jìn)行實(shí)驗(yàn)。采樣速率設(shè)定為122.88MSPS,而圖8 則顯示了時鐘相位噪聲。我們將一個6-MHz、寬帶通濾波器添加到時鐘輸入,以限制影響抖動的寬帶噪聲數(shù)量。選擇1-GHz 輸入信號的目的是確保SNR 減弱僅由于時鐘抖動。圖8 表明兩個FFT 尺寸的1/2 容器尺寸到40MHz 相位噪聲整合抖動結(jié)果都極為不同,而“表1”的SNR 測量情況也反映這種現(xiàn)象。

圖7 近區(qū)相位噪聲決定主容器附近FFT 容器的振幅
設(shè)置正確的整合上限
圖6 所示相位噪聲圖抖動貢獻(xiàn)量為~360 fs,其頻率偏移為10 到100MHz 之間。這比100Hz 到10MHz 之間偏移的所有~194 fs 抖動貢獻(xiàn)值要大得多。因此,所選整合上限可極大地影響計(jì)算得到的時鐘抖動,以及預(yù)計(jì)SNR匹配實(shí)際測量的好壞程度。
要確定正確的限制,您必須記住采樣過程中非常重要的事情是:來自其他尼奎斯特區(qū)域的時鐘信號偽帶內(nèi)噪聲和雜散,正如其出現(xiàn)在輸入信號時表現(xiàn)的那樣。因此,如果時鐘輸入的相位噪聲不受頻帶限制,同時沒有高頻規(guī)律性衰減,則整
相關(guān)閱讀:
- ...2012/03/19 10:04·時域時鐘抖動分析(一)
- ...· “芯創(chuàng)杯”首屆高校未來汽車人機(jī)交互設(shè)計(jì)大賽報(bào)名正式啟動
- ...· 探秘第二屆衛(wèi)藍(lán)山鷹“創(chuàng)新·共享”試驗(yàn)技術(shù)論壇!
- ...· “2018中國半導(dǎo)體生態(tài)鏈大會”在江蘇省盱眙舉行
- ...· 新主題新規(guī)劃,CITE 2019瞭望智慧未來
- ...· 從汽車到工廠,TI毫米波傳感器致力于創(chuàng)造更智能的世界
- ...· 意法半導(dǎo)體(ST)、Cinemo和Valens在CES 2018展上聯(lián)合演示汽車信息娛樂解決方案
- ...· 北京集成電路產(chǎn)業(yè)創(chuàng)新發(fā)展高峰論壇即將在京召開
- ...· 三菱電機(jī)強(qiáng)勢出擊PCIM亞洲2017展
- ...· GPGPU國產(chǎn)替代:中國芯片產(chǎn)業(yè)的空白地帶
- ...· 物聯(lián)網(wǎng)產(chǎn)品設(shè)計(jì)中Wi-Fi連接的四個關(guān)鍵因素
- ...· 第三屆中國MEMS智能傳感器產(chǎn)業(yè)發(fā)展大會即將于蚌埠拉開帷幕
- ...· IAIC專項(xiàng)賽演繹“中國芯“應(yīng)用創(chuàng)新,信息安全高峰論壇亮劍海寧
- ...· 智能控制有源鉗位反激
- ...· 解讀5G毫米波OTA 測試技術(shù)
- ...· 多個市場高速增長推動Molex加強(qiáng)汽車領(lǐng)域的發(fā)展
- ...· 中國綠色制造聯(lián)盟成立大會召開在即 政產(chǎn)學(xué)研用共探綠色發(fā)展新模式
- ...· Efinix® 全力驅(qū)動AI邊緣計(jì)算,成功推出Trion™ T20 FPGA樣品, 同時將產(chǎn)品擴(kuò)展到二十萬邏輯單元的T200 FPGA
- ...· 英飛凌亮相進(jìn)博會,引領(lǐng)智慧新生活
- ...· 三電產(chǎn)品開發(fā)及測試研討會北汽新能源專場成功舉行
- ...· Manz亞智科技跨入半導(dǎo)體領(lǐng)域 為面板級扇出型封裝提供化學(xué)濕制程、涂布及激光應(yīng)用等生產(chǎn)設(shè)備解決方案
- ...· 中電瑞華BITRODE動力電池測試系統(tǒng)順利交付北汽新能源
- ...· 中電瑞華FTF系列電池測試系統(tǒng)中標(biāo)北京新能源汽車股份有限公司
- ...· 中電瑞華大功率高壓能源反饋式負(fù)載系統(tǒng)成功交付中電熊貓
- ...· 中電瑞華國際在電動汽車及關(guān)鍵部件測評研討會上演繹先進(jìn)測評技術(shù)
- ...· 數(shù)據(jù)采集終端系統(tǒng)設(shè)備
- ...· 簡儀科技踏上新征程
- ...· 易靈思® 宣布 AEC-Q100 資質(zhì)認(rèn)證和汽車系列產(chǎn)品計(jì)劃
- ...· 易靈思® 宣布擴(kuò)充高性能 鈦金系列™ FPGA 產(chǎn)品 鈦金系列產(chǎn)品擴(kuò)充至包含 1M 邏輯單元的 FPGA
- ...· 易靈思® 宣布Trion® Titanium 在臺積電 (TSMC) 16納米工藝節(jié)點(diǎn)流片
- ...· TI杯2019年全國大學(xué)生電子設(shè)計(jì)競賽頒獎典禮在京舉行
- ...· BlackBerry QNX虛擬機(jī)獲得全球首個汽車安全完整性等級(ASIL) ‘D’認(rèn)證
- ...· 威馬汽車選擇BlackBerry助力下一代汽車








